

University/Academy:	Arab Academy for Science and Technology & Maritime Transport		
Faculty/Institute:	College of Computing & Information Technology	Course title	Computer System Security
Program:	B. Sc. In Computer Science	Course code	CS421

Course content	Week	Knowledge	Intellectual skills	Professional skills	General skills
Introduction	1	 Define security services, mechanisms and attacks. Describe OSI security architecture. 	 Differentiate between confidentiality and Integrity as security services 		
Classical Encryption Techniques – Part I	2	 Demonstrate the encryption model for the classical ciphers (Caesar – monoalphabetic – Playfair – Hill) 	 Distinguish between Symmetric ciphers and Asymmetric ciphers. Apply classical encryption algorithms 	 Design and implement an application to calculate a ciphertext using classical encryption algorithms Design and implement an application to demonstrate brute force attack on Caesar cipher 	Verify theory with practice
Classical Encryption Techniques – Part II	3	 Know the encryption model for the polyalphabetic cipher. Define the steganography process 	 Apply the polyalphabetic cipher on an example plaintext message Analyze the security strengths for some classical encryption techniques 		
Block Ciphers & DES	4	 Demonstrate the encryption model for the Fiestel cipher structure Illustrate the block diagram for the DES round 	 Apply a DES round on a block of bits Analyze the Avalanche effect in DES Recognize security problems with DES 	Design and implement an application to experiment with symmetric key encryption	Verify theory with practice

Form no. (11A): Knowledge and skills matrix for a course

National Authority for Quality Assurance and Accreditation of Education

		Demonstrate Triple DES operation			
Block cipher design principles/Block cipher modes of operation	5	Demonstrate operation of the different block cipher modes	 Compare the different block cipher models. 	 Design and implement an application to experiment with block cipher modes of operation 	Verify theory with practice
Advanced encryption standard - AES	6	Demonstrate the block diagram for AES	 Analyze the security strength of the AES key size 		
7th Week Exam	7				
Intro to Number Theory	8	 Define discrete logarithm Define Fermat's theorem Define Euler's Theorem 	 Calculate discrete logarithm Calculate Euler's totient function 		
Public key cryptography	9	 Define the principles of public-key cryptography Demonstrate how RSA works 	 calculate the public and private keys in the RSA algorithm 	 Design and implement an application to experiment with public key cryptography 	 Verify theory with practice
Key Distribution for Symmetric Encryption	10	 Demonstrate a key distribution scheme for symmetric encryption 	 Analyze a key distribution scheme for symmetric encryption 		
Key Distribution for Asymmetric Encryption	11	 Demonstrate the Diffie- Hellman key exchange algorithm 	 Analyze a key distribution scheme for asymmetric encryption Analyze Diffie-Hellman key exchange algorithm 	 Design and implement an application to calculate the common session key using Diffie- Hellman key agreement protocol 	Verify theory with practice
12th Week Exam	12				
Message Authentication and Hash Functions	13	 List the authentication requirements Describe the authentication functions 	 Differentiate between a message authentication code and a hash value Apply use of MAC and hash functions to provide message authentications 		
Hash and MAC Algorithms	14	 Describe the message digest algorithm Demonstrate the secure hash algorithm 	 Distinguish between Hashing and Encryption 	 Design and implement an application to experiment with MAC and hash algorithms 	 Verify theory with practice

Firewalls	15	Demonstrate Firewall	Identify security
		Design Principles	problems not handled by
			firewalls

Course Instructor	Head of Department
Name:	Name:
Signature:	Signature: